Search results for "Mass flow rate"

showing 10 items of 13 documents

Gas mass derived by infrasound and UV cameras: Implications for mass flow rate

2016

Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…

010504 meteorology & atmospheric sciencesInfrasoundMass flowVolcano acousticMagnitude (mathematics)ThrustGeophysicsMass flow rate010502 geochemistry & geophysics01 natural sciencesAtmosphereGeophysicsSulphur dioxide cameraThermal imagery13. Climate actionGeochemistry and PetrologyMass flow rateRange (statistics)WaveformGeology0105 earth and related environmental sciencesJournal of Volcanology and Geothermal Research
researchProduct

Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling

2020

We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…

Atmospheric SciencegeographyMaterials sciencegeography.geographical_feature_category010504 meteorology & atmospheric sciencesAtmospheric pressurelcsh:TA715-787lcsh:Earthwork. Foundations010401 analytical chemistryMechanicsInlet01 natural sciencesPressure sensorlcsh:Environmental engineering0104 chemical sciencesAerosolMass flow rateAerosol mass spectrometryVacuum chamberlcsh:TA170-171Body orifice0105 earth and related environmental sciencesAtmospheric Measurement Techniques
researchProduct

Natural Convection Cooling of a Hot Vertical Wall Wet by a Falling Liquid Film

2008

Abstract The system studied is a plane channel in which one of the two vertical walls is kept at an arbitrary temperature profile and may be partially or completely wet by a falling liquid film, while the opposite wall is adiabatic. Air from the environment flows along the channel with a mass flow rate which depends on the balance between hydraulic resistances and buoyancy forces. These latter, in their turn, depend on the distribution of temperature and humidity (hence, density) along the channel and eventually on the heat and mass transferred from wall and film to the humid air. A simplified computational model of the above system was developed and applied to the prediction of relevant qu…

ConvectionBuoyancyMaterials scienceThermodynamicsengineering.materialPhysics::Fluid DynamicsMass flow rateEvaporative CoolingFluid FlowPhysics::Atmospheric and Oceanic PhysicsEngineering & allied operationsSettore ING-IND/19 - Impianti NucleariFluid Flow and Transfer ProcessesNatural convectionNatural ConvectionMechanical Engineeringfree convection liquid film humid air evaporative cooling containment cooling heat and mass transferHumidityMechanicsContainmentCondensed Matter PhysicsHeat TransferPassive CoolingCoolantVolumetric flow rateLiquid FilmNuclear ReactorDecay Heat Removalengineeringddc:620Evaporative cooler
researchProduct

Using CFD to derive reduced order models for heat transfer in particle curtains

2015

3–D Eulerian–Eulerian CFD is used to simulate convective heat transfer in free falling particle curtains. Total heat loss for curtaining particles is compared to heat loss for isolated single particles. Spherical silica particles with density of 2,634 kg/m³ at 400 K (200 µm, 400 µm and 600 µm) flow at approximately 0.041 kg/s to 0.2 kg/s through a narrow slot in a rectangular box (0.45 m × 0.9 m × 0.225 m) filled with ambient air. The slot sizes through which the particles enter the rectangular box were 10 to 80 mm wide. Modifying the slot size at 0.041 kg/s for 400 µm particles can lead to 13% increases in rates of convective heat transfer per unit mass. A reduced order model was developed…

ConvectionDrag coefficientMaterials scienceConvective heat transferMass flowHeat transferMass flow rateParticleThermodynamicsMechanicsParticle sizeCondensed Matter PhysicsComputer Science ApplicationsProgress in Computational Fluid Dynamics, An International Journal
researchProduct

The Nukiyama Curve in Water Spray Cooling: its Derivation from Temperature-Time Histories and its Dependence on the Quantities that Characterize Drop…

2007

Abstract Heat transfer from hot aluminium walls to cold water sprays was investigated. The method used was the transient two-side symmetric cooling of a planar aluminium target, previously heated to temperatures of up to 750 K, by twin sprays issuing from full-cone swirl spray nozzles of various gauge. The target’s mid-plane temperature was recorded during the cooling transient by thin-foil K thermocouples and a high-frequency data acquisition system. In order to determine the wall temperature Tw, the wall heat flux q w ″ and the q w ″ - T w heat transfer (Nukiyama) curve, two different approaches were used: the first was based on the solution of an inverse heat conduction problem, the seco…

Fluid Flow and Transfer ProcessesMaterials sciencespray coolingCritical heat fluxMechanical EngineeringDrop (liquid)Thermodynamicsinverse conduction problemHeat transfer coefficientCondensed Matter Physicsinduction heatingDrop impactPhysics::Fluid DynamicsHeat fluxThermocoupleHeat transferMass flow rateSettore ING-IND/19 - Impianti Nucleari
researchProduct

Thermal-hydraulic optimisation of the DEMO divertor cassette body cooling circuit equipped with a liner

2019

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focused onto the most recent design of the Cassette Body (CB) cooling circuit equipped with a Liner, whose main function is to protect the underlying vacuum pump hole from the radiation arising from the plasma. The research campaign has been carried out following a theoretical-computational approach based on the Finite Volume Method and adopting the commercial…

Materials scienceNuclear engineeringThermofluid-dynamic7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlaw0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringPressure dropThermofluid-dynamicsCassette bodyMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringFlow velocityVacuum pumpFusion Engineering and Design
researchProduct

A semi-empirical approach for predicting two-phase flow discharge through branches of various orientations connected to a horizontal main pipe

2010

Abstract The subdivision of two-phase flow in branching conduits consisting of a large horizontal main pipe with upward, downward, or lateral branches of reduced diameter is of great interest in various technological fields. For example, these conduits are important in light-water nuclear reactors (LWRs) in the case of a small break loss-of-coolant accident (SBLOCA) in a leg of the reactor's primary coolant loops, as well as for breaks or valve malfunctions in a large pipeline. In these kinds of circumstances, the relevant phenomenology often involves phase stratification coupled with possible liquid entrainment or gas pool-through phenomena. Therefore, these phenomena were studied in depth…

Nuclear and High Energy PhysicsEngineeringStratification (water)STRATIFIED FLOWREGIONElectrical conduitTUBESSMALL BREAKForensic engineeringMass flow rateGeneral Materials ScienceDUAL DISCHARGESafety Risk Reliability and QualityWaste Management and DisposalINCLINED PLANESettore ING-IND/19 - Impianti NucleariSubdivisionPressure dropONSETSbusiness.industryMechanical EngineeringMechanicsLIQUID ENTRAINMENTCoolantNuclear Energy and EngineeringGASPATTERNSTwo-phase flowbusinessNuclear Engineering and Design
researchProduct

On the numerical assessment of the thermal-hydraulic operating map of the DEMO Divertor Plasma Facing Components cooling circuit

2020

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic behaviour of the DEMO divertor cassette cooling system, focussing the attention on the 2018 configuration of the Plasma Facing Components (PFCs) circuit consistent with the DEMO baseline 2017. The research campaign has been carried out following a theoretical-computational approach based on the finite volume method and adopting the commercial Computational Fluid-Dynamic (CFD) code ANSYS CFX. A steady-state CFD analysis has been carried out for the …

Nuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxbusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringEnvironmental sciencebusinessCFD analysisFusion Engineering and Design
researchProduct

On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

2016

Abstract As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in …

Pressure dropPipingComputer scienceWater flowMechanical EngineeringNuclear engineeringFull scaleBlanket CFD analysis HydraulicsBlanket01 natural sciences010305 fluids & plasmasCoolantNuclear Energy and Engineering0103 physical sciencesWater coolingMass flow rateGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

New considerations for modelling a MED-TVC plant under dynamic conditions

2019

Abstract The multiple-effect distillation (MED) technology is nowadays the most promising desalination process to be coupled with variable heat sources, thus leading to a more sustainable way to produce water. In order to prove the potential of this, it is of major interest to develop powerful modelling tools to predict the performance of this coupling. Only a few models have been presented so far. They show promising results but were based on some simplifying assumptions and non-physical constraints that could limit the analysis of the dynamic behaviour of a MED plant. This paper presents new considerations for the dynamic modelling of a MED plant associated with a thermal vapour compressi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciComputer scienceGeneral Chemical Engineering02 engineering and technologyTransient operation7. Clean energyDesalinationDynamic modelControl strategy[CHIM.GENI]Chemical Sciences/Chemical engineering020401 chemical engineeringLimit (music)Mass flow rateGeneral Materials Science[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering0204 chemical engineeringProcess engineeringCondenser (heat transfer)ComputingMilieux_MISCELLANEOUSWater Science and Technologybusiness.industryDesalinationMechanical EngineeringProcess (computing)General Chemistry021001 nanoscience & nanotechnology6. Clean waterDynamic simulationVariable (computer science)Transient (oscillation)0210 nano-technologybusiness
researchProduct